CamGW

The Cambridge Gravitational-Wave Network

View the Project on GitHub CamGW/camgw-web

Publications

A selection of recent publications by CamGW members.

2026

  1. Luca Brunelli, Filippo Revello, and Gonzalo Villa, The gravitational wave landscape of cosmic string networks with varying tension, arXiv:2601.10790 [hep-th]
  2. Eleni Bagui, Sébastien Clesse, Federico De Lillo, Alexander C. Jenkins, and Mairi Sakellariadou, Popcorn in the sky: Identifying primordial black holes in the gravitational-wave background, arXiv:2601.07774 [astro-ph.CO]
  3. Angelo Ricciardone et al. (inc. Alexander C. Jenkins), Probing Cosmic Expansion and Early Universe with Einstein Telescope, arXiv:2601.06017 [astro-ph.CO]
LVK Collaboration Papers
  1. The IceCube Collaboration, The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Deep Search for Joint Sources of Gravitational Waves and High-Energy Neutrinos with IceCube During the Third Observing Run of LIGO and Virgo, arXiv:2601.07595 [astro-ph.HE]

2025

  1. The Simons Observatory Collaboration (inc. A. Challinor and E. Hertig), The Simons Observatory: forecasted constraints on primordial gravitational waves with the expanded array of Small Aperture Telescopes, arXiv:2512.15833 [astro-ph.CO]
  2. Nikhil Sarin et al., GRBs and Relativistic Transients in the 2040s, arXiv:2512.15010 [astro-ph.HE]
  3. Samaya Nissanke et al. (inc. Nikhil Sarin), Multi-messenger and time-domain astronomy in the 2040s, arXiv:2512.14546 [astro-ph.IM]
  4. Atte Keitaanranta, Peter H. Johansson, Alexander Rawlings, Toni Tuominen, Antti Rantala, Thorsten Naab, Shihong Liao, and Bastián Reinoso, Rapid sinking and efficient mergers of supermassive black holes in compact high-redshift galaxies, arXiv:2512.11665 [astro-ph.GA]
  5. Thibault Damour, Tamanna Jain, and Ulrich Sperhake, Gravitational scattering of solitonic boson stars: Analytics vs Numerics, arXiv:2512.00945 [gr-qc]
  6. Emilie Hertig et al. (inc. Anthony Challinor), The Atacama Cosmology Telescope: $B$-mode delensing with DR6 data and external tracers of large-scale structure, arXiv:2511.21949 [astro-ph.CO]
  7. Noam Mouelle, Jeremiah Mitchell, Valerie Gibson, and Ulrich Schneider, Wavefront Curvature and Transverse Atomic Motion in Time-Resolved Atom Interferometry: Impact and Mitigation, arXiv:2510.26739 [physics.atom-ph]
  8. Eun-jin Shin, Matthew C. Smith, Debora Sijacki, Martin A. Bourne, and Sophie Koudmani, The MandelZoom project II: the impact of stellar feedback on black hole accretion through an $α$-disc in dwarf galaxies with a resolved interstellar medium, arXiv:2510.23548 [astro-ph.GA]
  9. Huifang Lyu, James Alvey, Noemi Anau Montel, Mauro Pieroni, and Christoph Weniger, Dynamic SBI: Round-free Sequential Simulation-Based Inference with Adaptive Datasets, arXiv:2510.13997 [astro-ph.IM]
  10. Gareth Arturo Marks and Abdullah Al Zaif, Boson Stars in $D \ge 4$ Dimensions: Stability, Oscillation Frequencies, and Dynamical Evolutions, arXiv:2510.13988 [gr-qc]
  11. Richard Dyer and Christopher J. Moore, Quasinormal modes from numerical relativity with Bayesian inference, arXiv:2510.11783 [gr-qc]
  12. Lazaros Souvaitzis, Antti Rantala, and Thorsten Naab, Elusive Plunges and Heavy Intermediate-mass-ratio Inspirals from Single and Binary Supermassive Black Holes, arXiv:2510.09743 [astro-ph.GA]
  13. Martin G. H. Krause et al. (inc. Debora Sijacki), Evidence for Supermassive Black Hole Binaries, arXiv:2510.07534 [astro-ph.HE]
  14. David Yallup, Metha Prathaban, James Alvey, and Will Handley, Parallel Nested Slice Sampling for Gravitational Wave Parameter Estimation, arXiv:2509.24949 [astro-ph.IM]
  15. Hannah Übler et al. (inc. Debora Sijacki), BlackTHUNDER: evidence for three massive black holes in a z~5 galaxy, arXiv:2509.21575 [astro-ph.GA]
  16. Charles Baynham et al. (inc. Ulrich Schneider), Letter of Intent: AICE – 100m Atom Interferometer Experiment at CERN, arXiv:2509.11867 [hep-ex]
  17. Metha Prathaban, David Yallup, James Alvey, Ming Yang, Will Templeton, and Will Handley, Gravitational-wave inference at GPU speed: A bilby-like nested sampling kernel within blackjax-ns, arXiv:2509.04336 [gr-qc]
  18. Gareth Arturo Marks, Perturbations of Solitonic Boson Stars: Nonlinear Radial Stability and Binding Energy, arXiv:2508.11757 [gr-qc]
  19. Sinah Legner, Will Handley, Will Barker, and Adam Ormondroyd, Alleviating the Hubble tension with Torsion Condensation (TorC), arXiv:2507.09228 [astro-ph.CO]
  20. Diego Blas, Adrien Bourgoin, Joshua F. Foster, Aurelien Hees, Miriam Herrero-Valea, Alexander C. Jenkins, and Xiao Xue, Binary systems as gravitational wave detectors, arXiv:2506.11802 [gr-qc]
  21. Antti Rantala, Natalia Lahén, Thorsten Naab, Gastón J. Escobar, and Giuliano Iorio, FROST-CLUSTERS – II. Massive stars, binaries and triples boost supermassive black hole seed formation in assembling star clusters, arXiv:2506.04330 [astro-ph.GA]
  22. Alexander Rawlings, Peter H. Johansson, Thorsten Naab, Antti Rantala, Jens Thomas, and Bianca Neureiter, Caught in the act: detections of recoiling supermassive black holes from simulations, arXiv:2505.17183 [astro-ph.GA]
  23. Philippa S. Cole, James Alvey, Lorenzo Speri, Christoph Weniger, Uddipta Bhardwaj, Davide Gerosa, and Gianfranco Bertone, Sequential simulation-based inference for extreme mass ratio inspirals, arXiv:2505.16795 [gr-qc]
  24. Anish Ghoshal, Filippo Revello, and Gonzalo Villa, Cosmic superstrings in large volume compactifications: PTAs, LISA and time-varying tension, arXiv:2504.20994 [astro-ph.CO]
  25. Gareth Arturo Marks, Seppe J. Staelens, Tamara Evstafyeva, and Ulrich Sperhake, Long-term stable nonlinear evolutions of ultracompact black-hole mimickers, arXiv:2504.17775 [gr-qc]
  26. Stephanie Buttigieg, Debora Sijacki, Christopher J. Moore, and Martin A. Bourne, Premature supermassive black hole mergers in cosmological simulations of structure formation, arXiv:2504.17549 [astro-ph.GA]
  27. Joshua W. Foster, Diego Blas, Adrien Bourgoin, Aurelien Hees, Míriam Herrero-Valea, Alexander C. Jenkins, and Xiao Xue, Prospects for gravitational wave and ultra-light dark matter detection with binary resonances beyond the secular approximation, arXiv:2504.16988 [gr-qc]
  28. Joshua W. Foster, Diego Blas, Adrien Bourgoin, Aurelien Hees, Míriam Herrero-Valea, Alexander C. Jenkins, and Xiao Xue, Discovering $μ$Hz gravitational waves and ultra-light dark matter with binary resonances, arXiv:2504.15334 [astro-ph.CO]
  29. C. F. A. Baynham et al. (inc. U. Schneider), A Prototype Atom Interferometer to Detect Dark Matter and Gravitational Waves, arXiv:2504.09158 [hep-ex]
  30. Antti Rantala and Thorsten Naab, A rapid channel for the collisional formation and gravitational wave driven mergers of supermassive black hole seeds at high redshift, arXiv:2503.21879 [astro-ph.GA]
  31. Adrian Abac et al. (inc. Michalis Agathos and Alexander C. Jenkins), The Science of the Einstein Telescope, arXiv:2503.12263 [gr-qc]
  32. Lazaros Souvaitzis, Antti Rantala, and Thorsten Naab, The role of Massive Black Holes in merging star clusters: dynamical evolution, stellar & compact object ejections and gravitational waves, arXiv:2503.11813 [astro-ph.GA]
  33. Carlos Hervías-Caimapo et al. (inc. Emilie Hertig), The Simons Observatory: Validation of reconstructed power spectra from simulated filtered maps for the Small Aperture Telescope survey, arXiv:2502.00946 [astro-ph.CO]
  34. Nancy Aggarwal et al. (inc. Fernando Quevedo), Challenges and Opportunities of Gravitational Wave Searches above 10 kHz, arXiv:2501.11723 [gr-qc]
LVK Collaboration Papers
  1. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Constraints on gravitational waves from the 2024 Vela pulsar glitch, arXiv:2512.17990 [gr-qc]
  2. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Search for planetary-mass ultra-compact binaries using data from the first part of the LIGO–Virgo–KAGRA fourth observing run, arXiv:2511.19911 [gr-qc]
  3. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), All-sky search for continuous gravitational-wave signals from unknown neutron stars in binary systems in the first part of the fourth LIGO-Virgo-KAGRA observing run, arXiv:2511.16863 [gr-qc]
  4. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Direct multi-model dark-matter search with gravitational-wave interferometers using data from the first part of the fourth LIGO-Virgo-KAGRA observing run, arXiv:2510.27022 [astro-ph.CO]
  5. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GW241011 and GW241110: Exploring Binary Formation and Fundamental Physics with Asymmetric, High-Spin Black Hole Coalescence, arXiv:2510.26931 [astro-ph.HE]
  6. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Cosmological and High Energy Physics implications from gravitational-wave background searches in LIGO-Virgo-KAGRA’s O1-O4a runs, arXiv:2510.26848 [gr-qc]
  7. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Directional Search for Persistent Gravitational Waves: Results from the First Part of LIGO-Virgo-KAGRA’s Fourth Observing Run, arXiv:2510.17487 [gr-qc]
  8. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GW250114: testing Hawking’s area law and the Kerr nature of black holes, arXiv:2509.08054 [gr-qc]
  9. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Directed searches for gravitational waves from ultralight vector boson clouds around merger remnant and galactic black holes during the first part of the fourth LIGO-Virgo-KAGRA observing run, arXiv:2509.07352 [gr-qc]
  10. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GWTC-4.0: Constraints on the Cosmic Expansion Rate and Modified Gravitational-wave Propagation, arXiv:2509.04348 [astro-ph.CO]
  11. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Upper Limits on the Isotropic Gravitational-Wave Background from the first part of LIGO, Virgo, and KAGRA’s fourth Observing Run, arXiv:2508.20721 [gr-qc]
  12. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GWTC-4.0: Population Properties of Merging Compact Binaries, arXiv:2508.18083 [astro-ph.HE]
  13. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GWTC-4.0: Updating the Gravitational-Wave Transient Catalog with Observations from the First Part of the Fourth LIGO-Virgo-KAGRA Observing Run, arXiv:2508.18082 [gr-qc]
  14. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GWTC-4.0: Methods for Identifying and Characterizing Gravitational-wave Transients, arXiv:2508.18081 [gr-qc]
  15. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GWTC-4.0: An Introduction to Version 4.0 of the Gravitational-Wave Transient Catalog, arXiv:2508.18080 [gr-qc]
  16. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Open Data from LIGO, Virgo, and KAGRA through the First Part of the Fourth Observing Run, arXiv:2508.18079 [gr-qc]
  17. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), All-sky search for long-duration gravitational-wave transients in the first part of the fourth LIGO-Virgo-KAGRA Observing run, arXiv:2507.12282 [gr-qc]
  18. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), GW231123: a Binary Black Hole Merger with Total Mass 190-265 $M_{\odot}$, arXiv:2507.08219 [astro-ph.HE]
  19. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run, arXiv:2501.01495 [astro-ph.HE]

2024

  1. Ericka Florio and E. Paul S. Shellard, Fully-relativistic evolution of vacuum tensor inhomogeneities during inflation, arXiv:2412.19731 [gr-qc]
  2. Noemi Anau Montel, James Alvey, and Christoph Weniger, Tests for model misspecification in simulation-based inference: from local distortions to global model checks, arXiv:2412.15100 [astro-ph.IM]
  3. Adam Abdalla et al. (inc. Priscilla Canizares and Ulrich Schneider), Terrestrial Very-Long-Baseline Atom Interferometry: Summary of the Second Workshop, arXiv:2412.14960 [hep-ex]
  4. Metha Prathaban, Harry Bevins, and Will Handley, Accelerated nested sampling with posterior repartitioning and $β$-flows for gravitational waves, arXiv:2411.17663 [astro-ph.IM]
  5. Igor Andreoni et al. (inc. Nikhil Sarin), Rubin ToO 2024: Envisioning the Vera C. Rubin Observatory LSST Target of Opportunity program, arXiv:2411.04793 [astro-ph.IM]
  6. Filippo Revello and Gonzalo Villa, Cosmic (super)strings with a time-varying tension, arXiv:2411.04186 [hep-ph]
  7. Bo-Xuan Ge, Eugene A. Lim, Ulrich Sperhake, Tamara Evstafyeva, Daniela Cors, Eloy de Jong, Robin Croft, and Thomas Helfer, Hair is complicated: Gravitational waves from stable and unstable boson-star mergers, arXiv:2410.23839 [gr-qc]
  8. Alexander Rawlings et al. (inc. Antti Rantala), Identifying supermassive black hole recoil in elliptical galaxies, arXiv:2410.13942 [astro-ph.GA]
  9. Richard Dyer and Christopher J. Moore, Black-Hole Cartography, arXiv:2410.13935 [gr-qc]
  10. Spencer J. Magnall, Simon R. Goode, Nikhil Sarin, and Paul D. Lasky, Directly inferring cosmology and the neutron-star equation of state from gravitational-wave mergers, arXiv:2410.07754 [gr-qc]
  11. Gonzalo Villa, Gravitational Waves from the Hagedorn Phase, arXiv:2410.07350 [hep-th]
  12. M. Sten Delos, Antti Rantala, Sam Young, and Fabian Schmidt, Structure formation with primordial black holes: collisional dynamics, binaries, and gravitational waves, arXiv:2410.01876 [astro-ph.CO]
  13. Yihao Zhou, Diptajyoti Mukherjee, Nianyi Chen, Tiziana Di Matteo, Peter H. Johansson, Antti Rantala, Christian Partmann, Ugo NiccolDi Carlo, Simeon Bird, and Yueying Ni, MAGICS II. Seed black holes stripped of their surrounding stars do not sink, arXiv:2409.19914 [astro-ph.GA]
  14. Andrew R. Frey, Ratul Mahanta, Anshuman Maharana, Fernando Quevedo, and Gonzalo Villa, Gravitational Waves from High Temperature Strings, arXiv:2408.13803 [hep-th]
  15. Teagan A. Clarke, Nikhil Sarin, Eric J. Howell, Paul D. Lasky, and Eric Thrane, Quantifying the coincidence between gravitational waves and fast radio bursts from neutron star - black hole mergers, arXiv:2408.02534 [astro-ph.HE]
  16. James Alvey, Uddipta Bhardwaj, Valerie Domcke, Mauro Pieroni, and Christoph Weniger, Leveraging Time-Dependent Instrumental Noise for LISA SGWB Analysis, arXiv:2408.00832 [gr-qc]
  17. Gayathri Raman et al. (inc. M. Agathos and N. Sarin), Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run, arXiv:2407.12867 [astro-ph.HE]
  18. Elise M. Sänger et al. (inc. Michalis Agathos), Tests of General Relativity with GW230529: a neutron star merging with a lower mass-gap compact object, arXiv:2406.03568 [gr-qc]
  19. Tamara Evstafyeva, Ulrich Sperhake, Isobel Romero-Shaw, and Michalis Agathos, Gravitational-Wave Data Analysis with High-Precision Numerical Relativity Simulations of Boson Star mergers, arXiv:2406.02715 [gr-qc]
  20. Lorenz Zwick, Deniz Soyuer, Daniel J. D’Orazio, David O’Neill, Andrea Derdzinski, Prasenjit Saha, Diego Blas, Alexander C. Jenkins, and Luke Zoltan Kelley, Bridging the micro-Hz gravitational wave gap via Doppler tracking with the Uranus Orbiter and Probe Mission: Massive black hole binaries, early universe signals and ultra-light dark matter, arXiv:2406.02306 [astro-ph.HE]
  21. Emilie Hertig, Kevin Wolz, Toshiya Namikawa, Antón Baleato Lizancos, Susanna Azzoni, and Anthony Challinor, The Simons Observatory: Combining delensing and foreground cleaning for improved constraints on inflation, arXiv:2405.13201 [astro-ph.CO]
  22. Jakob Stegmann, Alejandro Vigna-Gómez, Antti Rantala, Tom Wagg, Lorenz Zwick, Mathieu Renzo, Lieke A. C. van Son, Selma E. de Mink, and Simon D. M. White, Close Encounters of Wide Binaries Induced by the Galactic Tide: Implications for Stellar Mergers and Gravitational-Wave Sources, arXiv:2405.02912 [astro-ph.GA]
  23. Metha Prathaban and Will Handley, Costless correction of chain based nested sampling parameter estimation in gravitational wave data and beyond, arXiv:2404.16428 [astro-ph.IM]
  24. Tamanna Jain and Michalis Agathos, Improving inference on neutron star properties using information from binary merger remnants, arXiv:2404.12126 [gr-qc]
  25. Antti Rantala, Thorsten Naab, and Natalia Lahén, FROST-CLUSTERS – I. Hierarchical star cluster assembly boosts intermediate-mass black hole formation, arXiv:2403.10602 [astro-ph.GA]
LVK Collaboration Papers
  1. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Search for gravitational waves emitted from SN 2023ixf, arXiv:2410.16565 [astro-ph.HE]
  2. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154, arXiv:2410.09151 [astro-ph.HE]
  3. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star, arXiv:2404.04248 [astro-ph.HE]
  4. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Ultralight vector dark matter search using data from the KAGRA O3GK run, arXiv:2403.03004 [astro-ph.CO]

2023

  1. Nikolaos Kouvatsos, Alexander C. Jenkins, Arianna I. Renzini, Joseph D. Romano, and Mairi Sakellariadou, Unbiased estimation of gravitational-wave anisotropies from noisy data, arXiv:2312.09110 [astro-ph.CO]
  2. Sophie Koudmani, Rachel S. Somerville, Debora Sijacki, Martin A. Bourne, Yan-Fei Jiang, and Kasar Profit, A unified accretion disc model for supermassive black holes in galaxy formation simulations: method and implementation, arXiv:2312.08428 [astro-ph.GA]
  3. T. Namikawa et al. (inc. A. Challinor), LiteBIRD Science Goals and Forecasts: Improving Sensitivity to Inflationary Gravitational Waves with Multitracer Delensing, arXiv:2312.05194 [astro-ph.CO]
  4. Martin A. Bourne, Davide Fiacconi, Debora Sijacki, Joanna M. Piotrowska, and Sophie Koudmani, Dynamics and spin alignment in massive, gravito-turbulent circumbinary discs around supermassive black hole binaries, arXiv:2311.17144 [astro-ph.HE]
  5. Nikhil Sarin, Hiranya V. Peiris, Daniel J. Mortlock, Justin Alsing, Samaya M. Nissanke, and Stephen M. Feeney, Measuring the nuclear equation of state with neutron star-black hole mergers, arXiv:2311.05689 [gr-qc]
  6. LISA Consortium Waveform Working Group et al. (inc. Ulrich Sperhake), Waveform Modelling for the Laser Interferometer Space Antenna, arXiv:2311.01300 [gr-qc]
  7. Seppe Staelens and Gijs Nelemans, The Astrophysical Gravitational Wave Background in the mHz band is likely dominated by White Dwarf binaries, arXiv:2310.19448 [astro-ph.HE]
  8. S. Rosswog, P. Diener, F. Torsello, T. M. Tauris, and N. Sarin, Mergers of double neutron stars with one high-spin component: brighter kilonovae and fallback accretion, weaker gravitational waves, arXiv:2310.15920 [astro-ph.HE]
  9. Alexander Rasskazov and Roman R. Rafikov, Orbital evolution of LIGO/Virgo binaries in stellar clusters driven by cluster tides, stellar encounters and general relativity, arXiv:2310.15374 [astro-ph.GA]
  10. Sven Abend et al. (inc. Ulrich Schneider), Terrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary, arXiv:2310.08183 [hep-ex]
  11. Christian Partmann, Thorsten Naab, Antti Rantala, Anna Genina, Matias Mannerkoski, and Peter H. Johansson, The difficult path to coalescence: massive black hole dynamics in merging low mass dark matter haloes and galaxies, arXiv:2310.08079 [astro-ph.GA]
  12. James Alvey, Uddipta Bhardwaj, Valerie Domcke, Mauro Pieroni, and Christoph Weniger, Simulation-based inference for stochastic gravitational wave background data analysis, arXiv:2309.07954 [gr-qc]
  13. Nikhil Sarin et al., Redback: A Bayesian inference software package for electromagnetic transients, arXiv:2308.12806 [astro-ph.HE]
  14. James Alvey, Uddipta Bhardwaj, Samaya Nissanke, and Christoph Weniger, What to do when things get crowded? Scalable joint analysis of overlapping gravitational wave signals, arXiv:2308.06318 [gr-qc]
  15. A. Levan et al. (inc. N. Sarin), JWST detection of heavy neutron capture elements in a compact object merger, arXiv:2307.02098 [astro-ph.HE]
  16. Oliver Buchmueller, John Ellis, and Ulrich Schneider, Large-Scale Atom Interferometry for Fundamental Physics, arXiv:2306.17726 [astro-ph.CO]
  17. Rosie Y. Talbot, Debora Sijacki, and Martin A. Bourne, Simulations of spin-driven AGN jets in gas-rich galaxy mergers, arXiv:2306.07316 [astro-ph.GA]
  18. Chris Hamilton and Roman R. Rafikov, Relativistic phase space diffusion of compact object binaries in stellar clusters and hierarchical triples, arXiv:2306.03703 [astro-ph.GA]
  19. Uddipta Bhardwaj, James Alvey, Benjamin Kurt Miller, Samaya Nissanke, and Christoph Weniger, Peregrine: Sequential simulation-based inference for gravitational wave signals, arXiv:2304.02035 [gr-qc]
  20. Marica Branchesi et al. (inc. Alexander C. Jenkins), Science with the Einstein Telescope: a comparison of different designs, arXiv:2303.15923 [gr-qc]
  21. Michele Cicoli, Joseph P. Conlon, Anshuman Maharana, Susha Parameswaran, Fernando Quevedo, and Ivonne Zavala, String Cosmology: from the Early Universe to Today, arXiv:2303.04819 [hep-th]
  22. Francesco Muia, Fernando Quevedo, Andreas Schachner, and Gonzalo Villa, Testing BSM Physics with Gravitational Waves, arXiv:2303.01548 [hep-ph]
  23. Roxana Rosca-Mead, Michalis Agathos, Christopher J. Moore, and Ulrich Sperhake, Stochastic gravitational wave background from supernovae in massive scalar-tensor gravity, arXiv:2302.04995 [gr-qc]
  24. Silvia Gasparotto, Rodrigo Vicente, Diego Blas, Alexander C. Jenkins, and Enrico Barausse, Can gravitational-wave memory help constrain binary black-hole parameters? A LISA case study, arXiv:2301.13228 [gr-qc]
LVK Collaboration Papers
  1. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos, A. C. Jenkins, and N. Sarin), A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run, arXiv:2308.13666 [astro-ph.HE]
  2. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos and N. Sarin), Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo, arXiv:2308.03822 [astro-ph.HE]
  3. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos, A. C. Jenkins, and N. Sarin), Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network, arXiv:2304.08393 [gr-qc]
  4. The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration (inc. M. Agathos, A. C. Jenkins, and N. Sarin), Open data from the third observing run of LIGO, Virgo, KAGRA and GEO, arXiv:2302.03676 [gr-qc]

Back to Home